fe(e)de = e-ede distribuzione energia di Maxwell
S = NkB entropia gas di oscillatori armonici
zωCN = αωCNzωx legge di Kirchhoff
P = equazione di stato corpo nero CN
z = ∫ 0∞dωzω = σT4 legge di Stefan-Boltzmann
uω = legge di Planck
Relazioni di Plank-Einstein:
|
λdB = lunghezza d’onda di deBroglie
Δλf = 2λC sin2 legge di Compton
λn,m = R formula di Rydberg per l’idrogeno (n < m)
λa,b,n,m = R formula di Rydberg per il sodio
R = costante di Rydberg
ln = nℏ momento angolare
rB = raggio di Bohr
α = ≃ costante di struttura fine
rn = con γ ~ 1
ωn =
wn = -
= ×
= frequenza angolare di Larmor
∇2ψ -ψ = 0 equazione classica delle onde
(ψc0)2 - k2n2 = 0 equazione eikonale
⋅ (ac02ψc0) equazione di trasporto
Sc(t,) = ∫ 0tdt′ funzione di Hamilton
c = Sc
+ ⋅ (ρcSc) = 0 legge di conservazione
-iℏ = -∇2ψ + Uψ equazione di Schroedinger
ϖ(t,,) = ∫ e⋅ψ*(t, + )ψ(t, -) distribuzione di semiprobabilitá di Wigner
∫ d3yϖ = ρ
f * g = fg + + o(ℏ2) prodotto di Moyal
= posizione
= -iℏ quantitá di moto
= -iℏ × momento angolare
H = -∇2 + U energia (hamiltoniano)